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Abstract. We show that the optomechanical coupling between an optical cavity mode and two movable
cavity mirrors is able to entangle two different macroscopic oscillation modes of the mirrors. This continuous
variable entanglement is maintained by the light bouncing between the mirrors and is robust against
thermal noise. In fact, it could be experimentally demonstrated using present technology.

PACS. 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities,
GHZ states, etc.) – 42.50.Vk Mechanical effects of light on atoms, molecules, electrons, and ions –
03.65.Yz Decoherence; open systems; quantum statistical methods

1 Introduction

Entanglement is the most characteristic trait of quantum
mechanics [1]. An entangled state of a system consisting
of two subsystems cannot be described as a product (or a
statistical mixtures of products) of the quantum states of
the two subsystems. In such a state, the system is insepa-
rable and each component does not have properties inde-
pendent of the other components. The nonlocal character
of entangled states is at the basis of many paradoxes [2],
and of the deep difference between the quantum and the
classical world. The fundamental role of entanglement has
been reemphasized in recent years after the discovery that
it represents an unvaluable resource for quantum informa-
tion processing [3]. In fact, entanglement is at the basis
of secure quantum key distribution schemes [4], of quan-
tum teleportation [5], and of the speed-up provided by
some quantum algorithms [6]. It is generally believed that
entanglement can be found only in situations involving
a small number of microscopic particles. For example, a
given amount of entanglement is present between two dif-
ferent spins in the thermal equilibrium state of a system
of many interacting spins (the so-called thermal or natu-
ral entanglement [7]). However, for quantum information
processing, it is the deterministic generation and manipu-
lation of entanglement which is of paramount importance,
and in these last years a number of impressive experi-
ments has demonstrated the controlled generation of en-
tangled states of two [8], three [9] and four [10] particles.
Moreover, since entanglement is one of the distinguishing
features of the quantum world, it is also fundamental to
understand how far it can be extended into the macro-
scopic domain. This is important not only to better es-
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tablish how the macroscopic classical world emerges from
the microscopic one ruled by quantum mechanics [11],
but also for application purposes. For example, entan-
gled spin-squeezed states of atomic samples are known
to improve the precision of frequency measurements [12],
and the accuracy improves with increasing number of en-
tangled atoms. A related question is to establish if and
how two macroscopic degrees of freedom of two different
objects can be entangled. With this respect, a striking
achievement has been recently shown in [13], where the
entanglement between the spin states of two separated Cs
gas samples containing about 1012 atoms has been demon-
strated. At the same time we proposed a feasible experi-
ment [14] in which even a more macroscopic entanglement
between the oscillating modes of two mirrors with an ef-
fective mass of some milligrams can be generated by the
radiation pressure of the light bouncing between them (see
also [15] for a different and extremely idealized model for
the preparation of motion entangled states of two cavity
mirrors). The continuous variable entanglement between
two mechanical modes could be used to improve the de-
tection of weak classical forces in optomechanical devices
as atomic force microscopes or gravitational wave detec-
tors [16,17].

In this paper we analyze in more detail and further de-
velop the proposal of [14]. In fact, reference [14] restricted
to the case of identical cavity mirrors, i.e., considered,
for each mirror, a single oscillation mode with identi-
cal effective mass, optomechanical coupling, damping rate
and, above all, identical resonance frequency. However,
[14] showed that the entanglement is present only within
a small bandwidth around the mechanical resonance, and
since in practice two mirrors are never exactly identical,
it is important to establish the conditions under which
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Fig. 1. Schematic description of the system under study. L, be-
ing the equilibrium distance between the movable mirrors M1,
M2, is assumed to also be the distance between the fixed mir-
rors M3, M4. The mirror M3 represents the input-output port
of the cavity.

entanglement can be generated between two mechanical
modes with different resonance frequencies, and its de-
pendence on the frequency mismatch.

In Section 2 we describe the optomechanical system
under study in terms of quantum Langevin equations. In
Section 3 we solve the dynamics of the system in the fre-
quency domain, and then we characterize in detail the
entanglement between the two mirrors. Section 4 is for
concluding remarks.

2 The system

We consider an optical ring cavity in which two perfectly
reflecting mirrors can both oscillate under the effect of the
radiation pressure force (see Fig. 1). The motion of each
mirror is the result of the excitation of many oscillation
modes, either external [18,19] or internal [20,21]. The for-
mer is important for suspended mirrors since the excita-
tion of pendulum modes of the suspension system leads to
global displacements of the mirror. The latter corresponds
to deformations of the mirror surface due to the excitation
of internal acoustic modes of the substrate. These various
degrees of freedom have however different resonance fre-
quencies and one can select the mechanical response of a
single particular mode by using a bandpass filter in the
detection circuit [22]. For this reason we shall consider
a single mechanical mode for each mirror, which will be
therefore described as a simple harmonic oscillator. Since
we shall consider two mirrors with similar design, the two
modes will be characterized by different, but quite close,
values for the frequencies, Ω1 and Ω2, and for the effective
masses, m1 and m2.

The optomechanical coupling between the mirrors and
the cavity field is realized by the radiation pressure. The
electromagnetic field exerts a force on a movable mirror
which is proportional to the intensity of the field, which, at
the same time, is phase-shifted by a quantity proportional
to the the mirror displacement from the equilibrium posi-
tion. In the adiabatic limit in which the mirror frequency is
much smaller than the cavity free spectral range c/(2

√
2L)

(L is the diagonal of the square optical path in the cavity,

see Fig. 1), one can focus on one cavity mode only (with
annihilation operator b and frequency ωb), because pho-
ton scattering into other modes can be neglected [23]. One
gets the following Hamiltonian [24]

H = �ωbb
†b +

2∑
i=1

�Ωi

2
(
p2

i + q2
i

) − �b†b
2∑

j=1

(−1)jGjqj

+ i�
√

γb

(
βine−iωb0tb† − βin ∗eiωb0tb

)
, (1)

where qi and pi are the dimensionless position and mo-
mentum operators of the mirrors with [qi, pj ] = iδij ,
Gj = (ωb/L)

√
�/mjΩj (j = 1, 2) are the optomechani-

cal coupling constants, and the last terms in equation (1)
describe the laser driving the cavity mode, characterized
by a frequency ωb0 and a power P in

b = �ωb0|βin|2 (γb is
the cavity mode linewidth).

A detailed analysis of the problem, however, must in-
clude photon losses, and the thermal noise on the mir-
rors. It means that the interaction of the optical mode
with its reservoir and the effect of thermal fluctuations
on the two mirrors, not considered in Hamiltonian (1),
must be added. This can be accomplished in the standard
way [25,26]. We neglect instead all the technical sources
of noise, i.e., we shall assume that the driving laser is
stabilized in intensity and frequency, also because recent
experiments have shown that classical laser noise can be
made negligible in the relevant frequency range [19,20].
The full quantum dynamics of the system can be exactly
described by the following nonlinear Langevin equations
(in the interaction picture with respect to �ωbb

†b)

ḃ = i(ωb0 − ωb)b − ib(G1q1 − G2q2)

−γb

2
b +

√
γb

(
bin + βin

)
,

q̇j = Ωjpj ,

ṗj = −Ωjqj + (−)jGjb
†b − Γjpj + ξj , (2)

where Γj (j = 1, 2) are the mechanical damping rates of
the mechanical modes, bin(t) represent the vacuum white
noise operator at the cavity input [25], and the Langevin
noise operators for the quantum Brownian motion of the
mirrors are ξj(t). The non-vanishing noise correlations are

〈bin(t)bin †(t′)〉 = δ(t − t′), (3)

〈ξj(t)ξk(t′)〉 = δj,k

∫ ∞

0

dω
Γjω

2Ωj

×
[
coth

(
�ω

2kBT

)
cos [ω(t − t′)] − i sin [ω(t − t′)]

]
,

where kB is the Boltzmann constant and T the equilibrium
temperature (the two mirrors are considered in equilib-
rium with their respective bath at the same temperature).
Notice that the used approach for the Brownian motion is
quantum mechanical consistent at every temperature [26].

We consider the situation when the driving field is very
intense. Under this condition, the system is characterized
by a semiclassical steady state with the internal cavity
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mode in a coherent state |β〉, and a displaced equilibrium
position for the mirrors. The steady state values are ob-
tained by taking the expectation values of equations (2),
factorizing them and setting all the time derivatives to
zero. One gets

〈qj〉ss = (−)jGj |β|2/Ωj, 〈pj〉ss = 0,

β ≡ 〈b〉ss =
√

γbβ
in/ (γb/2 − i∆b) , (4)

where ∆b ≡ ωb0 − ωb − G1〈q1〉ss + G2〈q2〉ss, is the cavity
mode detuning.

Under these semiclassical conditions, the dynamics is
well described by linearizing equations (2) around the
steady state. If we now use the same symbols for the op-
erators describing the quantum fluctuations around the
steady state, we get the following linearized quantum
Langevin equations

ḃ = i∆bb − iβ(G1q1 − G2q2) − γb

2
b +

√
γbb

in, q̇j = Ωjpj ,

ṗj = −Ωjqj + (−)jGj(β∗b + βb†) − Γjpj + ξj . (5)

3 Entanglement characterization

The time evolution of the system can be easily obtained by
solving the linear quantum Langevin equations (5). How-
ever, as it happens in quantum optics for squeezing (see
for example [25]), it is more convenient to study the sys-
tem dynamics in the frequency domain. In fact, it is pos-
sible that, due to the effect of damping, and thermal and
quantum noise, the two mechanical modes of the mirrors
are never entangled in time, i.e., there is no time instant
in which the reduced state of the two mechanical modes
is entangled, unless appropriate (but difficult to prepare)
initial conditions of the whole system are considered.
Entanglement can be instead always present at a given
frequency. In fact, the two mirrors constitute, for each fre-
quency, a continuous variable bipartite system which, in a
given frequency bandwidth, can be in an entangled state.
The Fourier analysis refers to the quantum fluctuations
around the semiclassical steady state discussed in the pre-
ceding section, and the eventual entanglement found at a
given frequency would refer to a stationary state of the
corresponding spectral modes, maintained by the radia-
tion mode, and which decays only when the radiation is
turned off. The spectral analysis is more econvenient also
because in such systems the dynamics is experimentally
better studied in frequency rather than in time. The same
kind of spectral analysis of the nonlocal properties of a
bipartite continuous variable system has been already ap-
plied in reference [27] which demonstrated the EPR non-
locality between two optical beams of a nondegenerate
parametric amplifier, following the suggestion of [28].

Performing the Fourier transform of equations (5), one
easily gets for the mechanical modes operators (j = 1, 2)

qj(ω) = Bj(ω)bin(ω) + B∗
j (−ω)bin †(−ω)

+Ξj,1(ω)ξ1(ω) + Ξj,2(ω)ξ2(ω) (6)

pj(ω) = −i
ω

Ωj
qj(ω), (7)

where

Bj(ω) = (−)j 1
D(ω)

[
1

Ω3−jχ3−j(ω)

] [ √
γbGjβ

∗

γb/2 − i (∆b + ω)

]
,

(8a)

Ξj,k(ω) =
1

D(ω)

{
1

Ω3−jχ3−j(ω)
δj,k − iG3−jG3−k|β|2

×
[

1
γb/2 − i (∆b + ω)

− 1
γb/2 + i (∆b − ω)

]}
, (8b)

D(ω) =
1

Ω1Ω2χ1(ω)χ2(ω)
− i|β|2

[
G2

1

Ω2χ2(ω)
+

G2
2

Ω1χ1(ω)

]

×
[

1
γb/2 − i (∆b + ω)

− 1
γb/2 + i (∆b − ω)

]
, (8c)

and χj(ω) = [Ω2
j − ω2 − iωΓj ]−1 is the mechanical sus-

ceptibility of mode j. Notice that Ξ∗
j,k(ω) = Ξj,k(−ω)

and D∗(ω) = D(−ω), but B∗(ω) �= B(−ω).
The simplest way to establish the parameter region

where the oscillation modes of the two cavity mirrors are
entangled is to use one of the sufficient criteria for en-
tanglement of continuous variable systems already exist-
ing in the literature. These criteria are inequalities which
have to be satisfied by the product [14,29,30] or the
sum [31,32] of variances of appropriate linear combina-
tions of the rescaled position and momentum operators of
the continuous variable systems. These criteria are usually
formulated in terms of Heisenberg operators at the same
time instant, satisfying the usual commutation relations
[qj(t), pk(t)] = iδjk [29,31,32], but they can be adapted
to their Fourier transform, as long as the commutators
between the frequency-dependent continuous variable op-
erators are still a c-number [14]. This condition is satisfied
in the present case thanks to the linearity of the Fourier
transform and to the linear dynamics of the fluctuations
(see Eqs. (5)), implying that the commutators are always
c-number frequency-dependent functions.

The paradigmatic entangled state for continuous vari-
able systems is the state considered by Einstein, Podolski
and Rosen in their famous paper [2], i.e., the simultaneous
eigenstate of the relative distance q1 − q2 and of the total
momentum p1 +p2. In an entangled state of this kind, the
variances of these two operators are both small and it is
therefore natural to use them. Defining u = q1 − q2 and
v = p1 + p2, an inseparability criterion for the sum of the
variances in the case of arbitrary c-number commutators
is [31]

〈(∆u)2〉 + 〈(∆v)2〉 < 2|〈[q1, p1]〉|2, (9)

while that for the product of variances is [14,29,30]

〈(∆u)2〉〈(∆v)2〉 < |〈[q1, p1]〉|2. (10)

It is easy to see that the condition (9) implies condi-
tion (10), which means that the product criterion (10)
is easier to satisfy, and for this reason we shall consider
only the latter from now on. Furthermore, the product
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Fig. 2. Degree of entanglement E(ω) of equation (14) versus
frequency and temperature T , in the case of equal mechanical
resonance frequencies, Ω1 = Ω2 = 1 MHz. The plot has been
cut at E(ω) = 1. The other parameter values are in the text.

criterion (10) allows us to establish a connection with ref-
erences [28], which showed that when the inequality

〈(∆u)2〉〈(∆v)2〉 <
1
4
|〈[q1, p1]〉|2, (11)

is satisfied, an EPR-like paradox arises [2,33], based on the
inconsistency between quantum mechanics and local real-
ism, which has been then experimentally confirmed in [27].
The sufficient condition for inseparability of equation (10)
is weaker than condition (11), but this is not surprising,
since entangled states are only a necessary condition for
the realization of an EPR-like paradox (see however the
recent paper [30] where it is shown that the weaker insep-
arability sufficient condition (10) can be considered as a
marker of the existence of generalized, weaker, EPR cor-
relations).

In order to apply the inseparability criterion (10) in the
frequency domain, we have to make the frequency depen-
dent operators qj(ω) and pj(ω) Hermitian, i.e., to consider
the Hermitian component

RO(ω) =
O(ω) + O(−ω)

2
(12)

for any operator O(ω). Using the fact that 〈qj(ω)〉 =
〈pj(ω)〉 = 0, j = 1, 2 and ∀ω because they are associ-
ated to fluctuations around the semiclassical steady state,
equation (10) therefore becomes

〈R2
q1−q2

〉〈R2
p1+p2

〉 < |〈[Rq1 ,Rp1 ]〉|2 , (13)

which suggests the following definition of degree of en-
tanglement for the mechanical oscillation modes at fre-
quency ω of the two cavity mirrors [14]

E(ω) =
〈R2

q1−q2
〉〈R2

p1+p2
〉

|〈[Rq1 ,Rp1 ]〉|2
, (14)

which is a marker of entanglement whenever E(ω) < 1.
Using equations (8) it is possible to derive the analytic

expression of E(ω), which is however very cumbersome.

Fig. 3. Degree of entanglement E(ω) of equation (14) versus
frequency and temperature T , in the case of a mechanical fre-
quency mismatch Ω2 − Ω1 = 10 Hz. The plot has been cut
at E(ω) = 1. The other parameter values are in the text.

The two variances in the numerator of (14) are

〈R2
q1−q2

〉 =
1
4

{|B1(ω) − B2(ω)|2 + |B1(−ω) − B2(−ω)|2

+N1(ω)|Ξ1,1(ω) − Ξ2,1(ω)|2
+N2(ω)|Ξ1,2(ω) − Ξ2,2(ω)|2} , (15)

〈R2
p1+p2

〉 =
1
4

(
ω

Ω1

)2 {|B1(ω)|2 + |B1(−ω)|2

+N1(ω)
[|Ξ1,1(ω)|2 + |Ξ2,1(ω)|2]}

+
1
4

(
ω

Ω2

)2 {|B2(ω)|2 + |B2(−ω)|2

+N2(ω)
[|Ξ1,2(ω)|2 + |Ξ2,2(ω)|2]}

+
1
4

(
ω2

Ω1Ω2

)
{B1(ω)B∗

2(ω) + B1(−ω)B∗
2(−ω)

+B∗
1(ω)B2(ω) + B∗

1(−ω)B2(−ω)
+N1(ω) [Ξ1,1(ω)Ξ2,1(−ω) + Ξ1,1(−ω)Ξ2,1(ω)]
+N2(ω) [Ξ1,2(ω)Ξ2,2(−ω)
+Ξ1,2(−ω)Ξ2,2(ω)]} , (16)

with Nj(ω) = ω(Γj/Ωj) coth(�ω/2kBT ), while the com-
mutator in the denominator of (14) is given by

〈[Rq1 ,Rp1 ]〉 =
i
2

ω

Ω1

{
|B1(ω)|2 − |B1(−ω)|2

− ω
Γ1

Ω1

[|Ξ1,1(ω)|2+|Ξ1,2(ω)|2]
}

· (17)

In Figures 2–4 we have studied the behaviour of E(ω)
as a function of frequency and temperature, for different
values of the difference between the two resonance fre-
quencies of the mechanical modes, Ω1 − Ω2. This is an
important parameter because we have seen in [14] that in
the case of identical mirrors, the two mechanical modes
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Fig. 4. Degree of entanglement E(ω) of equation (14) versus
frequency and temperature T , in the case of a mechanical fre-
quency mismatch Ω2 − Ω1 = 20 Hz. The plot has been cut at
E(ω) = 1. The other parameter values are in the text.

are entangled only within a small bandwidth around the
mechanical resonance. Since in practice the two mirrors
will never be exactly identical, it is important to estab-
lish if the macroscopic entanglement is able to tolerate
a certain amount of frequency mismatch. For the other
parameter values we have considered an experimental sit-
uation comparable to that of references [20,22,34], where
the studied mirror oscillation mode is a Gaussian acoustic
mode. We have therefore considered a cavity driven by a
laser working at λ = 810 nm and power P in

b = 1 W, with
length L = 1 mm, detuning ∆b = 6 MHz, optical finesse
F = 25 000, yielding a cavity decay rate γb = 6 MHz. The
mechanical modes have been taken with effective mass
m1 = m2 = 23 mg, damping rates Γ1 = Γ2 = 1 Hz, and
Ω1 = 1 MHz, while we have changed the values of Ω2

around those of Ω1. These choices yield for the optome-
chanical couplings G1 � G2 � 2.5 Hz.

Figure 2 shows E(ω, T ) for no frequency mismatch,
Ω1 = Ω2, Figure 3 refers to the case with Ω2−Ω1 = 10 Hz,
and Figure 4 refers to the case with Ω2−Ω1 = 20 Hz. In all
cases, the region of the ω, T plane where the two mechan-
ical modes are entangled is centered in the middle of the
two mechanical resonances, i.e., E(ω, T ) always achieves
its minimum at ω = (Ω1 + Ω2)/2. The frequency band-
width of the entanglement region rapidly decreases with
increasing temperature, so that, with the chosen param-
eter values, entanglement disappears above T � 4 K. As
expected, the ω, T region where the two mirrors are entan-
gled becomes smaller for increasing frequency mismatch
(compare the three figures). Nonetheless these results are
extremely interesting because they clearly show the pos-
sibility to entangle two macroscopic oscillators (with an
effective mass of 23 mg) in a stationary way, using present
technology. In fact, the two modes are still clearly entan-
gled at T = 2 K and with Ω2 − Ω1 = 10 Hz (ten times
larger than the width of the mechanical resonance peaks,
see Fig. 3), while one is forced to go below T = 2 K when
the frequency mismatch is equal to 20 Hz (see Fig. 4).

Differently from temperature and frequency mismatch,
and as it can be seen from the involved analytical expres-

sion above, it is difficult to determine how the degree of
entanglement depends upon the other parameters. It can
only be verified that, as expected, entanglement improves
with increasing mechanical quality factor Qj = Ωj/Γj and
that it strongly improves with increasing the effective op-
tomechanical coupling constant, which is given by βGj

(see Eqs. (5)). This shows that for achieving even a more
macroscopic entanglement (i.e., larger masses), one has to
use smaller cavities and, above all, larger optical power.
The fundamental importance of the effective coupling con-
stant βGj also helps us to show which kind of entangled
state of the two mirrors is generated by the radiation pres-
sure. In fact, when the cavity mode intensity becomes
larger and larger, the optomechanical interaction tends
to project the two mechanical modes onto an approxi-
mate eigenstate of G1q1 − G2q2 (see Eqs. (1, 5)), which,
since in our case it is G1 � G2, is essentially equivalent
to the relative distance q1 − q2. The two oscillators oc-
cupy a state that, like a standard EPR state, has a very
small variance of the relative distance u = q1 − q2. On
the other hand, since the radiation pressure does not have
analogous effects on the total momentum v = p1 + p2, the
state of the mirrors does not exhibit such a small value
for the variance 〈(∆v)2〉 as the standard EPR state does.
Nonetheless, at large optical intensities, as shown by the
product criterion of equation (10), the effect of the radia-
tion pressure force on the relative distance is sufficient to
entangle the two macroscopic oscillator modes. Moreover,
as it can be seen from Figures 2–4, the degree of entangle-
ment E(ω) lies even below 1/4 at sufficiently low tempera-
tures, allowing therefore in principle also an experimental
test of EPR nonlocality with macroscopic oscillators, on
the basis of the inequality (11) of references [28].

4 Conclusions

We have shown how the optomechanical coupling realized
by the radiation pressure of an optical mode of a ring cav-
ity is able to entangle two macroscopic collective oscilla-
tion modes of two cavity mirrors. Using parameter values
corresponding to already performed experiments involv-
ing an optical cavity mode coupled to an acoustic mode of
the mirror (with an effective mass of many milligrams) we
have shown that an appreciable entanglement is achievable
at temperatures of some kelvin. This continuous variable
entanglement is established at a given frequency, between
the spectrally decomposed oscillation modes of the two
mirrors (see also Refs. [27,28] for an analogous spectral
analysis of the nonlocal properties of the beams of a non-
degenerate optical amplifier). One has a stationary en-
tanglement, which is maintained by the strongly driven
cavity mode as long as it is turned on. Using the degree of
entanglement E(ω) of equation (14), suggested by the in-
separability condition of equation (10), we have seen that
the entanglement is more robust when the two mechan-
ical resonance frequencies are equal (Fig. 2), but that it
tolerates a resonance frequency mismatch of tens of Hz,
much larger than the width of the resonance peaks. The
best entanglement is always achieved in the middle of the
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two mechanical resonances and the frequency bandwidth
of the entanglement parameter region rapidly decreases
with decreasing optomechanical coupling and increasing
temperatures.

This continuous variable entanglement between two
macroscopic collective degrees of freedom can be exper-
imentally measured using for example the three-cavity
scheme described in detail in [14]. In such a scheme, a ring
cavity is supplemented with two other external cavities,
each measuring the spectral components qj(ω) and pj(ω)
of each mirror oscillation mode via homodyne detection.
With these measurements, it is possible to obtain both
variances 〈R2

q1−q2
〉 and 〈R2

p1+p2
〉. As it has been verified

in [14], if the driving power of the meter cavities is much
smaller than the driving power of the “entangler” cav-
ity mode, the two additional cavities do not significantly
modify the entanglement dynamics. A simplified detec-
tion scheme, involving less than three cavities is currently
investigated. In fact, the homodyne detection of the en-
tangler mode b provides direct information on the relative
distance between the mirror modes q1 − q2. The measure-
ment of the total momentum quadrature p1 + p2 could be
then achieved using the result of this homodyne detection
and that of the homodyne measurement of the motion of a
single mirror provided by a second “meter” cavity mode. It
is however possible that an even simpler detection scheme
exists, using the entangler cavity mode only.

Another important aspect which has to be taken into
account is that the motion of each mirror is the superpo-
sition of many oscillation modes with different resonance
frequencies. We can safely verify the entanglement be-
tween the two considered oscillation modes provided that
the other modes of the two mirrors are sufficiently far
away in frequency so that their contribution at the anal-
ysed frequencies is negligible. Moreover, the above analysis
also applies, almost unmodified, to the case when the two
modes belong to the same mirror.

The possibility to prepare entangled state of two
macroscopic degrees of freedom is not only conceptually
important for better understanding the relation between
the macroscopic world ruled by classical mechanics and
the quantum mechanical microscopic substrate, but it may
also prove to be useful for some applications. For exam-
ple, reference [16] has showed that entangled states of the
kind studied here could improve the detection of weak
mechanical forces acting on the mirrors as those due to
gravitational waves [35].
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